Properties of Continuous Functions

IMPORTANT

Properties of Continuous Functions: Overview

This topic covers concepts, such as, Properties of Continuous Functions, Algebra of Continuous Functions, Continuity of Composite Functions, Continuity of Standard Functions, Intermediate Value Theorem for Continuity & Extreme Value Theorem etc.

Important Questions on Properties of Continuous Functions

EASY
IMPORTANT

Find the constants a and b so that the function f defined below is continuous in R

 fx=1,x3ax+b,3<x<57,x5

EASY
IMPORTANT

A function fx is continuous over a closed interval x1, 4.

What can you conclude using the extreme value theorem about a function that is continuous over the closed interval x1, 4?

EASY
IMPORTANT

A function has a maximum and a minimum in the closed interval a, b; therefore, the function is continuous in a, b.

EASY
IMPORTANT

The converse of extreme value theorem is always true.

EASY
IMPORTANT

A function is continuous over the interval a, b; therefore, the function has a maximum and a minimum in the closed interval.

EASY
IMPORTANT

Let f:RR be a continuous function. Then, f is surjective if

MEDIUM
IMPORTANT

If the function f(x) is continuous on its domain [-2,2] when,

fx=sinaxx+2, for -2x<03x+5, for 0x1x2+8-b, for 1<x2

HARD
IMPORTANT

Determine the values of a, b, c for which the function defined by

fx=sin(a+1)x+sinxx, for x<0      =c, for x=0      =x+bx21/2-x1/2bx1/2, for x>0

is continuous at x=0.

EASY
IMPORTANT

Find k, so that the function fx is continuous at x=1, where

fx =kx2, for x1        =4, for x<1

HARD
IMPORTANT

Find the value of a and b such that the function defined by

fx =5, if x2       =ax+b, if 2<x<10       =21, if x10is continuous on at x=2 as well as x=10.

HARD
IMPORTANT

If fx is defined by fx=sin2x,    if xπ6      =ax+b,    if x>π6Find the value of a and b, if fx is continuous and differentiable at x=π6.

HARD
IMPORTANT

Examine the continuity of the following function at given point

fx=x,for 0x<121-x,for 12x<1} at x=12

HARD
IMPORTANT

Examine the continuity of the following function at given point

fx=limx0e1x-1e1x+1,for x01,for x=0} at x=0

HARD
IMPORTANT

If fx=x2-9x-3+α, for x>3       =5, for x=3       =2x2+3x+β,    for x<3 is continuous at x=3 then find α and β.

HARD
IMPORTANT

If fx=sinπxx-1+a, for x1       =2π, for x=1       =1+cosπxπ(1-x)2+b, for x>1 is continuous at x=1, find a and b.

HARD
IMPORTANT

Examine the continuity of the following function at given point 

fx=xx,for x0c,for x=0} at x=0 where c is arbitrary constant

HARD
IMPORTANT

If fx=sin4x5x+a, for x>0      =x+4-b for x<0      =1 for x=0 is continuous at x=0, find a and b.

HARD
IMPORTANT

If fx=x2+α, for x02x2+1+β, for x<0 and f12=2, is continuous at x=0, find α and β.

HARD
IMPORTANT

If f(x)=1-3 tan xπ-6x, for xπ6 is continous at x=π6, find fπ6.

HARD
IMPORTANT

If fx=4x-2x+1+11-cos x, for x0 is continuous at x=0, find f0.